Where does the error come from?

Review

A more complex model does not always lead to better performance on *testing data*.

Estimator

Only Niantic knows \hat{f}

From training data, we find f^*

Bias + Variance 2" 3" 4" 5" 6" 7"

 f^* is an estimator of \hat{f}

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of mean μ
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n} \neq \mu$$

$$E[m] = E\left[\frac{1}{N}\sum_{n} x^{n}\right] = \frac{1}{N}\sum_{n} E[x^{n}] = \mu$$

unbiased

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of mean μ
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^n \neq \mu$$

$$Var[m] = \frac{\sigma^2}{N}$$

Variance depends on the number of samples

unbiased

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of variance σ^2
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n}$$
 $s = \frac{1}{N} \sum_{n} (x^{n} - m)^{2}$

Biased estimator

$$E[s] = \frac{N-1}{N}\sigma^2 \neq \sigma^2$$

Parallel Universes

• In all the universes, we are collecting (catching) 10 Pokémons as training data to find f^{\ast}

Parallel Universes

• In different universes, we use the same model, but obtain different f^{\ast}

Variance

Large Variance

Simpler model is less influenced by the sampled data

Consider the extreme case f(x) = 5

Bias

$$E[f^*] = \bar{f}$$

• Bias: If we average all the f^* , is it close to \hat{f} ?

Black curve: the true function \hat{f}

Red curves: $5000 f^*$

Bias v.s. Variance

What to do with large bias?

- Diagnosis:
 - If your model cannot even fit the training examples, then you have large bias Underfitting
 - If you can fit the training data, but large error on testing data, then you probably have large variance

 Overfitting
- For bias, redesign your model:
 - Add more features as input
 - A more complex model

What to do with large variance?

• More data

Very effective,
but not always
practical

10 examples

Regularization I

May increase bias

Model Selection

- There is usually a trade-off between bias and variance.
- Select a model that balances two kinds of error to minimize total error
- What you should NOT do:

Homework

public

private

Training Set

Testing Set

Testing Set

Model 1 \longrightarrow Err = 0.9

Model 2 \longrightarrow Err = 0.7

Model 3 \longrightarrow Err = 0.5

Err > 0.5

I beat baseline!

No, you don't

What will happen?

http://www.chioka.in/howto-select-your-final-modelsin-a-kaggle-competitio/

Model Selection Do and Don't

Testing data should never involve in model training nor model selection!!

K-fold Cross Validation

3-fold cross validation

Leave One Out (LOO) Cross Validation

Definition 1. Let H be a family of functions mapping from input space \mathcal{X} to output space \mathcal{Y} . Define the Leave One Out (LOO) cross validation error of algorithm $\mathcal{A}: \bigcup_{m\in\mathbb{N}} (\mathcal{X}\times\mathcal{Y})^m \to H$ on sample $S=((x_i,y_i))_{i=1}^m \in (\mathcal{X}\times\mathcal{Y})^m$ as

$$\hat{\mathcal{R}}_S^{LOO}(\mathcal{A}) = \frac{1}{m} \sum_{i=1}^m \ell(h_{S_i}(x_i), y_i)$$

where $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$ is the loss function, $S_i = S \setminus \{(x_i, y_i)\}, h_{S_i} = \mathcal{A}(S_i)$.

Unbiased Estimation of Testing Error

Theorem 2. Let H be a family of functions mapping from input space \mathcal{X} to output space \mathcal{Y} , and let $\mathcal{A}: \bigcup_{m \in \mathbb{N}} (\mathcal{X} \times \mathcal{Y})^m \to H$. Let D be the unknown underlying distribution on $\mathcal{X} \times \mathcal{Y}$, then

$$\mathbb{E}_{S \sim D^m} [\hat{\mathcal{R}}_S^{LOO}(\mathcal{A})] = \mathbb{E}_{S' \sim D^{m-1}, (x,y) \in D} [\ell(\mathcal{A}(S')(x), y)]$$

In other words, LOO cross validation (on m instances) is an unbiased estimate of the algorithm's testing error (after training on m-1 instances).

Proof. For $S = ((x_i, y_i))_{i=1}^m \in (\mathcal{X} \times \mathcal{Y})^m$, denote $S_i = S \setminus \{(x_i, y_i)\}, h_S = \mathcal{A}(S)$. Then

$$\mathbb{E}_{S \sim D^{m}} [\hat{\mathcal{R}}_{S}^{LOO}(\mathcal{A})] = \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{S \sim D^{m}} [\ell(h_{S_{i}}(x_{i}), y_{i})]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{S_{i} \sim D^{m-1}, (x_{i}, y_{i}) \sim D} [\ell(h_{S_{i}}(x_{i}), y_{i})]$$

$$= \mathbb{E}_{S' \sim D^{m-1}, (x, y) \in D} [\ell(h_{S'}(x), y)].$$