Where does the error
come from?



Review
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Average Error on Testing Data
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150 error due to "bias" and

error due to "variance"
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A more complex model does not always lead to
better performance on testing data.




Estimator
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Only Niantic knows f
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From training data, R
we find [~ f

f* is an estimator of f



Bias and Variance of Estimator

_ , unbiased
e Estimate the mean of a variable x

* assume the mean of xis u m;
e assume the variance of x is g2

e Estimator of mean u ms
« Sample N points: {x1, x?, ..., x"} my
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Bias and Variance of Estimator

unbiased
e Estimate the mean of a variable x

e assume the mean of x is u Smaller N Larger N
e assume the variance of x is g2

* Estimator of mean u
« Sample N points: {x1, x?, ..., x"}

1
m=—= ) x" #
n
2 Variance depends
o
Var[m] = — on the number of

samples




Bias and Variance of Estimator

e Estimate the mean of a variable x
* assume the mean of x is u

e assume the variance of xis o
2

2

Estimator of variance o
« Sample N points: {x1!, x?, ..., x"}

1 1
m=NZx" S=N2(x"—m)2
n n

Biased estimator

N-—-1

2 2
Na;tO'

Els] =

Increase N




Low Bias

High Bias

Low Variance

High Variance




Parallel Universes

* In all the universes, we are collecting (catching) 10
Pokémons as training data to find [~
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Parallel Universes

* |n different universes, we use the same model, but
obtain different [~
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CP after evoluatio
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CP after evoluatic
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Simgler model is less influenced b¥ the samgled data

Consider the extreme case f(x) =




Bias )
Elf'l=f

* Bias: If we average all the f*, is it close to f ?
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Black curve: the true function f
Red curves: 5000 f*

Blue curve: the average of 5000 f*
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Bias v.s. Variance
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——  Error from bias
200

——  Error from variance
150
—— Error observed
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Underfitting
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What to do with large b

* Diagnosis:

1as ?

* If your model cannot even fit the training

examples, then you have large b

Gy Underftting _

* If you can fit the training data, but large error on

testing data, then you probably

have large

variance BN gitaesx

* For bias, redesign your model:
 Add more features as input ¢ ..
* A more complex model -

1400 +

large bias




What to do with large variance?
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e More data
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Very effective, =
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Model Selection

* There is usually a trade-off between bias and variance.

e Select a model that balances two kinds of error to minimize
total error

* What you should NOT do:

_ Set
Model 1l ————Err=0.9
— — Model 2 ——— Err=0.7

Model 3 ——Err=0.5 > Err>0.5

(not in hand)




Homework

public private

Training Set Testing Set Testing Set

B Model 1l ————Err=0.9

— — Mode|l 2 ——— Err=0.7

Model 3 ————Err=0.5| — Err>0.5

| beat baseline! No, you don't

TOP 10/IN PUBLIG/LEADERBOARD
What will happen? e

http://www.chioka.in/how-
to-select-your-final-models-
in-a-kaggle-competitio/

RANKED 3XX IN PRIVATE LEADERBOARD




Model Selection Do and Don’t

public private
Training Set Testing Set § Testing Set
Training Validation Using the results of public testing

data to tune your model

You are making public set
better than private set.

Set set

rModeI 1 »Err=0.9 4
< Model 2 »Err=0.7 Not recommend
JModeI 3 *Err=0.5\ —— Err>05 —— Err>0.5

Testing data should never involve in model training nor model selection!!




K-fold Cross Validation

3-fold cross validation

Train

Train

Val

Training Set

Train

Val

Train

Val

Train

Train

Testing Set
public

Model 1 Model 2

Err=0.2 Err=0.4
Err=0.4 Err=0.5

Err=0.3 Err=0.6

Avg Err  Avg Err
=0.3 =0.5

Testing Set

private

Model 3

Err=0.4
Err=0.5

Err=0.3

Avg Err
=0.4



Leave One Out (LOO) Cross Validation

Definition 1. Let H be a family of functions mapping from input space X to
output space Y. Define the Leave One Out (LOO) cross wvalidation error of
algorithm A : |J,,en(X x V)™ = H on sample S = ((wi, yi))jz; € (X X Y)™ as

RLOO - Z{ hS l/z

where € 1Y x Y — Rx>q is the loss function, S; = S\ {(xi,yi)}, hs, = A(S:).



Unbiased Estimation of Testing Error

Theorem 2. Let H be a family of functions mapping from input space X to

output space Y, and let A : |J,,cn(X x V)™ — H. Let D be the unknown
underlying distribution on X X ), then

Es.pm[R59?(A)] = Esipm—1, (z.)en[((A(S") (), y)]

In other words, LOO cross validation (on m instances) is an unbiased estimate
of the algorithm’s testing error (after training on m — 1 instances).

Proof. For S = ((wi,yi)), € (X xY)™, denote S; = S\ {(xi,vi)}, hs = A(S).
Then

Es~pm[R57(A)]

1 m
; Z ESWDm [((hst (J.’i)! 5’}1)]

—ZES Dt (o gy (s, (26), 52)
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—Esf Dm— I(I y)ED[( hS" ) j)]



